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The onset of natural convection in an infinite horizontal layer of a fractured-porous
medium is investigated. The breakdown of local equilibrium between the low-permeability
matrix and fractures embedded in the matrix is accounted for by applying the
dual-porosity dual-permeability model. The symmetric case of impermeable and
isothermal boundaries of the layer is examined in detail. By means of linear perturbation
analysis, the dispersion equation is derived, and its solutions are investigated numerically
as well as analytically in a few asymptotic cases. It is determined that the critical
Rayleigh number depends only on the permeability, heat conductivity ratios and the
coefficient of heat and mass transfer between fractures and matrix. It is shown that the
convection exhibits a rich variety of flow patterns at near-critical conditions. Nine flow
regimes can arise with co-rotating or counter-rotating convection cells in the fractures and
matrix. These modes can bifurcate to the plane flow regime, in which only cross-medium
convection occurs. The complete classification of the flow regimes is provided and plotted
in a solution map. Finally, the theoretical analysis is supported by the numerical modelling
of the convection by using a reservoir simulator.
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1. Introduction

Internal natural convection in a horizontal layer of a porous medium uniformly heated
from below has been broadly investigated by many authors. The simplest case of
convection in a homogeneous porous medium was first considered by Horton & Rogers
(1945) and independently by Lapwood (1948), who determined the critical Rayleigh
(Rayleigh–Darcy) number, Rac = 4π2, in the case of the isothermal and impermeable
boundaries of the layer. The analysis was extended to other boundary conditions by
Nield (1968). Afterwards, this Horton–Rogers–Lapwood (HRL) problem was considered,
accounting for additional physical processes, including convection in anisotropic media
(Epherre 1975), non-Darcy flow (Walker & Homsy 1977), hydrodynamic dispersion of
temperature (Kvernvold & Tyvand 1980), nonlinear effects (Rees, Magyari & Keller
2005), viscous dissipation (Magyari, Rees & Keller 2005) and other phenomena, which
have been reviewed by Nield & Bejan (2017).
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Significant attention has been concentrated on convection in porous media considering
local thermal non-equilibrium (LTNE), as reviewed by Straughan (2015). Darcy–Bénard
convection was studied by Banu & Rees (2002) and Postelnicu & Rees (2003) for the
case when the thermal equilibrium between the skeleton of the porous medium and the
fluid breaks down, and these two solid and fluid phases have different temperatures. Using
a two-temperature model, they showed that LTNE influences the onset of convection. A
more general case of convection in bi-dispersed porous medium (BDPM) has received
attention from Nield & Kuznetsov (2006) and Straughan (2009). The BDPM is a standard
porous medium in which the solid phase is replaced with another porous medium (Chen,
Cheng & Zhao 2000). Thus, there are macropores in the first medium and micropores
in the second medium, which is nested in the first one. Both media have their own
temperatures and fluid velocities. It was found that the critical Rayleigh number in BDPM
can be much larger than that in the equivalent homogeneous porous medium. Recently,
this study was extended by Straughan (2018, 2019) to the case of anisotropic BDPM.

Understanding and predicting convection in BDPM is of interest for microfluidic
applications related to designing heat transfer and insulation in small devices (Straughan
2015), as well as for flows over much larger space scales in geophysical applications. For
example, convection in naturally fractured rocks has implications for geothermal energy
extraction (Gérard et al. 2006; Nie et al. 2012), ore deposits (Weis 2015; Afanasyev
et al. 2018) and other transport processes in the Earth’s crust (Simmons 2005). The
dual-porosity dual-permeability model is a standard model for predicting fluid and heat
transport in fractured rocks, although other approaches exist (Dietrich et al. 2005). As for
BDPM, such a model is built on the double-continuum concept by assuming the existence
of two nested porous media, namely, the fractures, corresponding to the macropores,
and the lower-permeability matrix blocks between the fractures corresponding to the
micropores (Barenblatt, Zheltov & Kochina 1960; Warren & Root 1963). The size of
the matrix blocks can significantly exceed tens of metres in geologic reservoirs, which
drastically increases the time required for pressure and temperature equilibration between
the media. In many cases, natural flow in subsurface reservoirs is very slow. It can be
simulated by employing Darcy’s law, with the mass transfer between fractures and matrix
driven by the difference in pressures, and the conduction heat transfer driven by the
difference in temperatures (Pruess 1983; Pruess & Narasimhan 1985). Thus, the governing
equations for BDPM differ from those for the dual-porosity dual-permeability medium
(DPM). The BDPM model usually accounts for the Brinkman term and momentum
transfer between the media and neglects the fluid transport associated with different
pressures in the fractures and the matrix. On the contrary, the DPM model accounts
for the latter but assumes Darcy flow without accounting explicitly for the momentum
transfer. Thus, the existing works on convection in BDPM cannot be directly applied to
hydrothermal systems composed of naturally fractured rocks.

Hydrothermal fluid circulation through naturally fractured rocks exhibits a rich variety
of flow patterns that have been widely investigated by means of the numerical modelling of
Darcy flow. Yang, Latychev & Edwards (1998) and Diersch & Kolditz (2002) showed that
convection patterns in fractured-porous media differ from those in homogeneous media
because fractures represent preferential pathways for fluid flow. The flow patterns of free
convection were investigated by Simmons, Sharp & Nield (2008). It was shown that there
can arise both intra-fracture convection patterns, i.e. when convection cells are parallel
to fracture planes, and inter-fracture patterns, when convection cells are perpendicular
to the fracture plane. Every convection cell is located in a single fracture in the case of
intra-fracture patterns, whereas the cells are stretched over a pair of fractures in the case
of inter-fracture patterns. Simmons et al. (2008) stress that both these modes must be
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taken into account to avoid underestimating the likelihood of convection. Recently, these
and other patterns were simulated by Vujević et al. (2014) and Vujević & Graf (2015).
They considered different types of fracture networks and investigated how the network
parameters influence the onset of convection and the flow patterns. It was found that the
existence of regular fracture circuits lead to the onset of inter-fracture convection. Also,
counter-rotating circulation cells can develop in nearby fractures.

The theoretical analysis, which to some extent can be applied for estimating the critical
Rayleigh number in DPM, was conducted by McKibbin & O’Sullivan (1980). They
considered the Darcy–Bénard convection in the case of a layered porous medium when
particular layers, which are thin and characterized by high permeability, are considered
fractures (McKibbin & Tyvand 1984). The study by Banu & Rees (2002) can be applied
to the convection in a dual-porosity (not dual-permeability) medium when the flow occurs
only through fractures. To date, there has been no theoretical analysis of convection
patterns in DPM, particularly in the case of dual permeability when fluid flow through each
of the media and between them is possible. In addition to the noted practical significance,
such an analysis would be useful for the better classification of the flow regimes simulated
by Vujević et al. (2014) and others.

In this theoretical study, we analyse the flow patterns in the fractured-porous medium
by considering the HRL problem for DPM. We examine the symmetric case of isothermal
upper and lower boundaries of the layer when the respective spectral problem admits
a relatively simple analytical solution and leave the cases of other boundary conditions
for later studies. We investigate the critical Rayleigh number dependence upon similarity
parameters and support analytical findings with numerical modelling of the convection
flow. With a certain degree of approximation, the considered problem can be applied for
understanding convective flows in a horizontal layer of a hydrothermal system bounded
from above and below with impermeable rocks. We investigate the parameters leading to
the onset of convection in such a layer and show that nine flow regimes can be established,
depending on the parameters of the layer.

2. Problem statement

Let us consider an infinite horizontal layer of DPM of height H saturated with a
single-phase fluid (figure 1, x, y ∈ (−∞,∞)). Both the lower and upper boundaries of
the layer are impermeable and isothermal, i.e. constant temperatures T+ and T− = 0 are
held at z = 0 and z = H, respectively. It is assumed that the layer is uniformly heated from
below, and so, T+ > T−.

Applying the multi-continuum approach, we model convection in the fractured-porous
medium using two inter-penetrating porous media (figure 1). The first medium, Φ f ,
corresponds to fractures, fissures or channels, forming high-permeability pathways for
fluid, whereas the second medium, Φm, corresponds to low-permeability matrix blocks
between the fractures. In what follows, we denote the parameters of fractures and matrix
with the superscripts f and m, respectively. Furthermore, we will not refer to Φ f and Φm

as ‘fractures’ and ‘matrix’ because the study may include a wider range of applications in
which Φ f and Φm correspond to different types of pore space.

We characterize the pore space of DPM with the relative volume γ = V f /V of the
medium Φ f , where V = V f + Vm is the bulk representative elementary volume of DPM,
and V j, j = f , m is the elementary volume occupied by Φ j. Then, the relative volume of
the medium Φm is 1 − γ = Vm/V . We characterize each medium with its own porosity,
φ j = V j

por/V j, and absolute permeability, K j, where V j
por is the volume of pore space in
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FIGURE 1. Sketch of the horizontal layer of DPM, which is modelled with two inter-penetrating
continua Φ f and Φm. For clarity, the layers corresponding to each continuum are drawn
separately.

the corresponding medium. Then, the pore spaces of Φ f and Φm occupy the fractions γφ f

and (1 − γ )φm of the elementary volume V .
For the mathematical modelling of the natural convection, we formulate for each

medium its own Darcy’s law, along with the mass and energy balance equations.
Furthermore, we investigate convection in the Oberbeck–Boussinesq approximation, and
we thus account for the fluid density changes only in the terms containing the gravity
acceleration g. The system of governing equations, which can be derived from Pruess
(1983), Pruess & Narasimhan (1985) and Dietrich et al. (2005), consists of

ρ j = ρ0(1 − βT j), j = f , m, (2.1)

u j = −K j

μ
(∇p j − ρ jg), (2.2)

∇ · u j = −b jq fm, q fm = σ1
Km

μ
(p f − pm), (2.3a,b)

(ρc) j∂tT j + ∇ · (ρ0cT ju j) + ∇ · (p ju j)

= ρ jg · u j + λ j∇2T j − b jq fm(ρ0cT fm + p j) − b jσ2λ
m(T f − Tm), (2.4)

where ρ, μ and β = const are the fluid density, the dynamic viscosity and the thermal
expansion coefficient, respectively; ρ0 is the reference value of the fluid density; u is the
Darcy velocity; p is the pressure; T is the temperature; q fm is the mass flux from Φ f

into Φm; b f = 1 and bm = −1 are constants; λ j is the bulk heat conductivity of saturated
medium Φ j; and (ρc) j is the bulk volume heat capacity of Φ j, expressed as

(ρc) f = γ (φ f ρ0c + (1 − φ f )ρrcr), (ρc)m = (1 − γ )(φmρ0c + (1 − φm)ρrcr).

Here, the subscript r denotes the parameters of the solid phase, which are assumed to be
equal in both media, and c and cr are the specific heat capacities of the fluid and solid
phase, respectively.

Equation (2.1) is the fluid equation of state, (2.2) is Darcy’s law and (2.3a) and (2.4)
are the mass and energy balance equations for each medium. In (2.4), the terms ∇ · (p ju j)
and q fm(p f − pm), obtained by summing (2.4) for j = f and m, correspond to the work of
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pressure when the fluid flows through each medium and between the media, respectively
(Brownell, Garg & Pritchett 1977; Garg & Pritchett 1977); the term ρ jg · u j is the work
of gravity; λ j∇2T j corresponds to conductive heat transfer through each medium; and
q fmρ0cT fm and σ2λ

m(T f − Tm) are the convective and conductive heat transfers from Φ f

to Φm. Here, T fm is the upwind value of temperature. If the fluid flows from Φ f into
Φm (q fm > 0), then T fm = T f , or vice versa; if it flows from Φm into Φ f (q fm < 0), then
T fm = Tm. The definition of T fm is irrelevant in the linear perturbation analysis carried
out in §§ 4–7 but is used in the numerical modelling of fluid transport presented in § 8.
For further clarification of the energy balance equation, we substitute (2.2) and (2.3a) into
(2.4) thereby expressing it as

(ρc) j∂tT j + ρ0cu j · ∇T j − λ j∇2T j

= μ(u j)2/K j − b jρ0cq fm(T fm − T j) − b jσ2λ
m(T f − Tm). (2.5)

Thus, the energy balance equation for each Φ j is the usual advection–diffusion equation
for temperature with a source term – i.e. the right-hand side of (2.5) – equal to the sum
of a dissipation term μ(u j)2/K j (Ene & Sanchez-Palencia 1982) and the convective and
conductive heat fluxes between Φ j. The quadratic term μ(u j)2/K j is the consequence of
including the works of pressure and gravity in the energy balance (2.4). If one of the
works is neglected and the other one is taken into account, then the dissipation term is
not quadratic, and the dissipation can become negative. The governing equations thus
contradict the second law of thermodynamics (Afanas’ev 2012). Therefore, both works
must be either taken into account or neglected. For generality of this study, we include
both works in (2.4).

The mass flux and the conductive heat flux between the media, q fm and σ2λ
m(T f − Tm),

respectively, are proportional to the products σ1Km/μ and σ2λ
m, which are the coefficients

of mass and heat transfer between Φ j. Here, σ1 and σ2 are the shape factors characterizing
the fracture network. The constants σ1 and σ2 can be derived under the assumption of either
quasi-steady (Warren & Root 1963; Kazemi et al. 1976) or transient (Pruess & Narasimhan
1985; Lim & Aziz 1995) exchange between Φ j. Independently of the exchange model, we
further consider σ1 and σ2 as given parameters. The transfer coefficients σ1Km/μ and
σ2λ

m are proportional to Km and λm, reflecting that the mass and heat exchange between
Φ j is mostly defined by the permeability and heat conductivity in Φm. In applications,
σ1 cannot be equal to σ2. For example, σ1 can be reduced by solute precipitation on
the fracture walls and associated local permeability reduction. Similarly, in microfluidic
applications, σ2 can be reduced by designing DPM with insulated layers on the boundaries
of high-permeability channels. However, in §§ 6–8, for simplicity, we restrict the study to
the case of

σ1 ≡ σ2. (2.6)

The bulk parameters of DPM are expressed as

φ = γφ f + (1 − γ )φm, K = K f + Km,

(ρc) = (ρc) f + (ρc)m, λ = λ f + λm,

}
(2.7)

where, and in what follows, the bar denotes bulk quantities. These are the parameters
of the homogeneous porous medium (EPM), which is equivalent to DPM under local
equilibrium, p f = pm and T f = Tm. If we sum (2.2)–(2.4) pairwise for j = f and m and
place p f = pm and T f = Tm, then we obtain the equations for transport in EPM with the
bulk parameters (2.7).
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We assume that the system is in the conduction state. Thus, the basic steady-state
solution represents the hydrostatic fluid distribution under local equilibrium between Φ j

T j = T+ − α0z, u j = 0, (2.8a,b)

where α0 = (T+ − T−)/H > 0 is constant. In the state (2.8), the porous medium is
saturated with quiescent thermally stratified fluid.

The basic solution (2.8) satisfies the following boundary conditions:

T j = T+, u j
z = 0 on z = 0,

T j = T−, u j
z = 0 on z = H,

}
(2.9)

corresponding to the isothermal and impermeable lower and upper boundaries of the layer.
Here, uz is the vertical component of fluid velocity.

3. Governing equations in dimensionless form

We take the layer thickness H as the characteristic length scale and denote the
characteristic scales of the other parameters by the subscript s

ρs = ρ0α0βH, ps = ρsgH, us = K
μ

ρsg,

ts = Hφ

us
= Hφμ

Kρsg
, Ts = T+ − T− = α0H.

According to (2.1) and (2.8a), the density scale ρs is the fluid density change across
the layer in the steady-state solution (2.8). Thus, the pressure scale ps is the increase in
hydrostatic pressure head of height H if the temperature at each point of the layer decreases
by Ts. The scale us is the instant Darcy velocity of a representative elementary volume of
fluid heated up to the temperature T+ and placed in the equivalent homogeneous layer of
uniform temperature T−, and ts is the time required for this volume to float up across the
layer, assuming no heat exchange between the volume and the solid phase or other fluid.

Using the characteristic scales, we introduce the dimensionless parameters as

r∗ = r
H

, υ∗ = υ

υs
, r = (x, y, z), υ = (ρ, p, T, u, t), (3.1)

where the asterisks denote the dimensionless variables, and r is the position vector.
After substituting (2.7) and (3.1) into (2.1)–(2.4) and further omitting the asterisks of

the dimensionless parameters, we obtain

ρ j = α−1 − T j, u j = −κ j(∇p j + ρ jez),

∇ · u j = −b jq fm, q fm = κm

B1
(p f − pm),

S j∂tT j + u j · ∇T j + Υ u j · ∇p j = −Υρ ju j · ez + κ j

Ra j ∇2T j

−b jq fm(T fm − T j) − b jΛm

RaB2
(T f − Tm),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)
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where ez is the unit vector in the opposite direction to gravity (g = −gez), and the
following dimensionless quantities are introduced:

S j = (ρc) j

φρ0c
, Ra j = ρ2

0 cK jgHα

λ jμ
, Ra = ρ2

0 cKgHα

λμ
, Υ = gβH

c
,

α = α0βH = ρs

ρ0
, κ j = K j

K
, Λ j = λ j

λ
, Bi = 1

σiH2
, i = 1, 2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

According to (3.3), the inequalities S j > 0, Ra j > 0, and Ra > 0 hold, where Ra j is the
Rayleigh number for the medium Φ j. The quantities S j and Ra j for Φ j are related to S and
Ra for EPM by

S = S f + Sm,
1

Ra
= κ f

Ra f + κm

Ram , Ra = Λ f Ra f + ΛmRam, (3.4)

where, according to the definitions of κ j, Λ j, and Ra j in (3.3), both expressions for Ra can
be applied at the same time.

The ratios κ j and Λ j characterize the permeability and heat conductivity distribution
between the two media, where κ f + κm = 1 and Λ f + Λm = 1. The fractions κ f and Λ f

of the bulk quantities K and λ belong to Φ f , whereas the fractions κm and Λm belong
to Φm. The parameters K j and λ j can vary in a wide range, depending on the particular
porous medium. For example, λ j depends on the heat conductivities of the solid and fluid
phases, as well as the topology of the pore space, which can lead to either parallel or series
transmission of heat (Ghanbarian & Daigle 2016). The permeability K j can also vary in
a wide range depending on the topology of the pore space and the fracture density. The
fracture permeability K f can be both larger and less than Km because it is proportional to
the volumetric flux density u f (Nield & Bejan 2017). The case of K f < Km corresponds to
γ � 1 when |u f | < |um| even though the intrinsic average velocity in Φ f can be larger
than that in Φm, i.e. |u f |/γφ f > |um|/(1 − γ )φm. To account for all types of porous
medium, we assume 0 ≤ κ j ≤ 1 and 0 ≤ Λ j ≤ 1.

The quantities Bi characterize the intensity of mass and heat transfer between Φ j.
If Bi � 1, then the flow occurs under local equilibrium and one can use EPM as a
substitute for DPM. If Bi ∼ 1 or Bi 
 1, then the local equilibrium breaks down and one
must apply DPM in order to account for different pressures and temperatures in Φ j. In
geophysical applications, the shape factors σi can be estimated as σi = d/L2

b, where Lb
is the characteristic distance between fractures, and typically, the constant d lies in the
range of 4–27 (Kazemi et al. 1976; Lim & Aziz 1995). The double-continuum concept is
meaningful if Lb � H, i.e. if a representative elementary volume in Φ f can be defined
for volume averaging (Dietrich et al. 2005). The relation Lb � H is equivalent to Bi � 1.
As noted above, particular physical phenomena, e.g. local permeability reduction due to
solute precipitation, can increase Bi, but we bear in mind that Bi > 1 is unlikely in a
geophysical context. In a designed porous medium, e.g. if Φ f corresponds to channels
embedded into a low-permeability medium, the meaningful values of Bi can be higher
than 1. For convection in BDPM, Nield & Kuznetsov (2006) consider B2 in the range
of 0–100. Further, we investigate convection regimes at 0 ≤ Bi ≤ 100, 0 ≤ κ j ≤ 1, and
0 ≤ Λ j ≤ 1 so as not to miss any application.
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Substituting (2.1) and (2.2) into (2.8b) and integrating the obtained equation, we reduce
(2.8) and (2.9) to the following dimensionless form:

p j = 1 − 1 − α

α
z − z2

2
, T j = 1 − z, ρ j = 1 − α

α
+ z, (3.5)

T j = 1, u j
z = 0 on z = 0,

T j = 0, u j
z = 0 on z = 1.

}
(3.6)

4. Dispersion equation

4.1. Derivation of the equation
We now examine the stability of the basic solution (3.5) by substituting

p j = 1 − 1 − α

α
z − z2

2
+ Π j, T j = 1 − z + Θ j, ρ j = 1 − α

α
+ z + R j,

into (3.2), where Π j,Θ j, R j(r, t) → 0 are small perturbations of the p, T and ρ. The
fluid velocity is also assumed to be small, u j → 0. After neglecting second-order small
quantities and eliminating q fm between (3.2), we obtain the linearized equations

R j = −Θ j, u j = −κ j(∇Π j + R jez), (4.1)

κ j
(∇2Π j − ∇zΘ

j
) = b jκm

B1
(Π f − Πm),

S j∂tΘ
j + κ j(∇zΠ

j − Θ j) = κ j

Ra j ∇2Θ j − b jΛm

RaB2
(Θ f − Θm),

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

where (4.2) form a closed system of four linear partial differential equations for Π j and
Θ j, and the fluid densities and velocities can be expressed in terms of Π j and Θ j using
(4.1).

Separating the variables, we present the solution to (4.2) in the form

Π j = Π
j

0(z)ζ, Θ j = Θ
j

0(z)ζ, ζ = exp(i(kx x + ky y) + Ωt), (4.3)

where kx and ky are the wavenumbers and Ω is the growth rate. We assume that kx and ky

are real numbers. This implies that the perturbations are not brought from infinity (x, y →
∞), so the convection is not generated by an external force. Substituting (4.3) into (3.6)
and (4.2), we obtain

κ j

(
d2Π

j
0

dz2
− k2

xyΠ
j

0 − dΘ
j

0

dz

)
− b jκm

B1
(Π

f
0 − Πm

0 ) = 0,

ΩS jΘ
j

0 + κ j

(
dΠ

j
0

dz
− Θ

j
0

)
− κ j

Ra j

(
d2Θ

j
0

dz2
− k2

xyΘ
j

0

)

+b jΛm

RaB2
(Θ

f
0 − Θm

0 ) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

with the boundary conditions

Θ
j

0 = 0,
dΠ

j
0

dz
= 0 on z = 0 and z = 1, (4.5)
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where k2
xy = k2

x + k2
y denotes the overall horizontal wavenumber. Without loss of

generality, we assume that kxy ≥ 0 because this wavenumber enters (4.4) only as k2
xy .

A non-trivial solution to the eigenvalue problem given by (4.4) and (4.5) exists for
particular values of the spectral parameter Ω . For boundary conditions considered in
this paper (4.5), the non-trivial solution to the conjugate problem can be written in the
following simple form (Davis 1969):

Θ
j

0 = δΘ j sin(kzz), Π
j

0 = δΠ j cos(kzz), kz = πn, n = 1, 2, 3, . . . , (4.6)

where kz is a real number that takes discrete values, and the constant amplitudes δΠ j and
δΘ j are still unknown. To determine δΠ j and δΘ j, we substitute (4.6) into (4.4). This
yields

(
k2κ j + κm

B1

)
δΠ j + kzκ

jδΘ j − κm

B1
δΠ i = 0,

−kzκ
jδΠ j +

(
ΩS j − κ j + k2 κ j

Ra j + Λm

RaB2

)
δΘ j − Λm

RaB2
δΘ i = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

where we introduce the notation k2 = k2
xy + k2

z and i = f , m, i /= j.
Equations (4.7) form a homogeneous system of linear equations with respect to δΠ j and

δΘ j. There is a non-trivial solution if the matrix of coefficients for (4.7) is singular. By
calculating and equating to zero the determinant of the matrix and carrying out identity
transformations, we obtain the following dispersion relation:

D f Dm + (
D f + Dm

)
Zc = 0, (4.8)

where we denote

D j = ΩS j + κ j

(
k2

Ra j − k2
xy

k2

)
, Zc = Λm

RaB2
− κ f κm

k2κ f B1 + 1
k2

z

k2
. (4.9a,b)

The equation D j = 0 is the dispersion relation in the HRL problem for the regular single
porosity medium Φ j, assuming zero mass and heat exchange with the adjacent medium.

Assuming that D f + Dm /= 0, (4.8) can be written as

D f Dm

D f + Dm
= −Zc. (4.10)

The left-hand side of (4.10) is proportional to the harmonic mean of D j, reflecting that
the mass and heat transfer through DPM occur in parallel through Φ f and Φm. This is
analogous to parallel conductors (Nield & Simmons 2007).

Taking into account (4.8) and (4.9), we derive from (4.1) and (4.7) the following
relationships for the amplitudes:

D f δΘ f + DmδΘm = 0, (4.11)

δΠ j = 1
κ jkz

(
− κ j

D j

k2
z

k2
− 1

Zc

(
Λm

RaB2
− Zc

))
D jδΘ j, (4.12)
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δu j
z =

(
κ j

D j

k2
xy

k2
− 1

Zc

(
Λm

RaB2
− Zc

))
D jδΘ j,

δq fm = κm

B1

(
δΠ f − δΠm

) = 1
Zc

(
Λm

RaB2
− Zc

)
D f δΘ f ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.13)

where δu j
z and δq fm are the amplitudes of uz and q fm in the solution given by (4.3) and (4.6)

u j
z = δu j

z sin(kzz)ζ, q fm = δq fm cos(kzz)ζ. (4.14)

4.2. Geometric interpretation
In general, the growth rate Ω is a complex number. According to (4.3), if Re Ω > 0, then
the perturbation grows, and if Re Ω < 0, then it fades. From (4.9), it follows that (4.8) is
a quadratic equation with respect to Ω

a0Ω
2 + a1Ω + a2 = 0, (4.15)

which coefficients are given by

a0 = S f Sm, a1 = S f Zm + SmZ f + SZc, a2 = Z f Zm + Z f Zc + ZmZc, (4.16a–c)

Z j = κ j

(
k2

Ra j − k2
xy

k2

)
= D j − ΩS j, j = f , m. (4.17)

We apply the Routh–Hurwitz stability criterion to the characteristic polynomial (4.15)
to determine the parameters corresponding to Re Ω ≤ 0. The inequality a0 > 0 holds
because S j > 0. Therefore, the thermal stratification is stable if and only if all leading
principal minors of the Hurwitz matrix are positive. This leads to the inequalities a1 ≥ 0
and a2 ≥ 0, or using the notations of (4.16b,c), to

S f Zm + SmZ f + SZc ≥ 0, Z f Zm + Z f Zc + ZmZc ≥ 0. (4.18a,b)

In the space {Z f , Zm, Zc}, the equations a1 = 0 and a2 = 0 define a plane and a circular
conical surface, respectively (figure 2). The origin is the only point of intersection of
these surfaces. Indeed, if we express Zc from the equation a1 = 0 and substitute it into the
equation a2 = 0, then we obtain

(Z f )2Sm + (Zm)2S f = 0.

This equation is satisfied only if both Z f = 0 and Zm = 0, and according to (4.16b,c),
Zc = 0. Thus, the plane a1 = 0 splits the conical surface a2 = 0 into the upper and lower
parts, which contain the intervals Zc > 0 and Zc < 0 of the axis Zc, respectively. The
inequality a1 ≥ 0 constrains the upper region above the plane, and the inequality a2 ≥ 0
constrains the region inside the conical surface (figure 2). Therefore, the parameters of
stable layers, in which convection does not occur, coincide with the interior of the upper
conical surface given by (4.18). If Ra → 0, then all solutions to (4.8) satisfy inequalities
(4.18) because if the dimensional temperature gradient α0 approaches 0, then the thermal
stratification is stable. This means that the locus of the solution for each n = const is
a curve lying inside the conical surface at Ra → 0 (figure 2, curve 1). Each curve can
be parameterized by either kxy or Ω . With rising Ra, i.e. with increasing temperature
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Z f

Zm

Zc

a2 = 0
(lower)

a2 = 0 (upper)

a1 = 0 1

2

Z f < 0
Zm < 0

Zс < 0

FIGURE 2. Sketch of the locus of solutions to the dispersion equation in the {Z f , Zm, Zc} space
(curve 1) and key surfaces defining the onset of convection. The coordinate axes belong to the
conical surface a2 = 0.

gradient α0, one of these curves (further analysis of solutions to (4.8) shows that it is
with n = 1) approaches the boundary of (4.18b), and it first intersects the boundary at the
critical Rayleigh number, Rac. If Ra > Rac, then a segment of such curve corresponding
to growing perturbations lies outside the stability region (4.18). At Ra = Rac, the locus
touches exactly the conical surface a2 = 0 and not the plane surface a1 = 0. Therefore,
the inequality (4.18b) is more relevant than (4.18a) because it is this inequality that is
violated at Ra = Rac. The critical number Rac is the minimum Ra for which the equation
a2 = 0 has a solution.

According to (4.15) and (4.16), the monotonic (not oscillatory) instability of the basic
state (3.6) develops at near-critical parameters, Ra → Rac+. This means that if Re Ω → 0
(or a2 → 0), then Im Ω ≡ 0. Indeed, if a2 → 0, then the discriminant of (4.15) is not
negative, and therefore, both solutions to (4.15) are real numbers.

5. Sufficient stability conditions

To assist interpretation of the numerical solutions to (4.8) presented in § 7, it is worth
considering several asymptotic cases for (4.8) to explicitly show some not obvious features
of the convection. For this reason, we present the sufficient stability conditions in § 5 and
several particular solutions to (4.8) in § 6.

To satisfy (4.18), it is sufficient to satisfy the three more simple inequalities
simultaneously for all kx , ky and kz

Z f ≥ 0, Zm ≥ 0, Zc ≥ 0. (5.1)

Therefore, these inequalities are sufficient conditions for stability of the stratification
(3.6), i.e. for the absence of convection. The conditions (5.1) mean that parameters of
all perturbations (4.3) in the {Z f , Zm, Zc} space lie inside the conical surface for which the
directrix is the triangle with vertices belonging to each of three coordinate axes (figure 2,
surface 2). The geometrical interpretation of the sufficient conditions is as follows: if the
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locus of solutions to (4.8) lies inside that conical surface, then it also lies inside the circular
conical surface a2 = 0.

According to (4.17), the inequality Z j ≥ 0 is identical to the following:

Ra j ≤ k4/k2
xy. (5.2)

To satisfy (5.2) for all kx , ky and kz, one must determine those wavenumbers that minimize
the right-hand side of (5.2) and set Ra j less than that minimum. For every discrete value of
kz = πn, the minimum 4π2n2 of the k4/k2

xy ratio is reached at kxy = πn (Horton & Rogers
1945). Therefore, if

Ra j ≤ 4π2n2, (5.3)

then (5.2) holds for corresponding n. The inequality (5.3) is identical to the stability
condition for a homogeneous medium. Consequently, the sign of the quantity Z f (or Zm)
defines the stability of the basic state (3.5) in the medium Φ f (or Φm), if it is assumed to
be isolated from the other medium Φm (or Φ f ). If Z j ≥ 0 for all kx , ky and kz = πn, then
the conduction state in the isolated medium Φ j is stable, and if Z j < 0, then convection
occurs.

According to (4.9b), the inequality Zc ≥ 0 is identical to the following:

Ra ≤ Λm(k2κ f B1 + 1)

κ f κmB2

k2

k2
z

. (5.4)

The right-hand side of (5.4) is the increasing function of k2
xy (if k2

xy ≥ 0); therefore, it
reaches a minimum at k2

xy = 0. Consequently, inequality (5.4) for every kz = πn reduces
to

Ra ≤ Λm(π2n2κ f B1 + 1)

κ f κmB2
. (5.5)

If (5.5) holds, then the inequality Zc ≥ 0 is satisfied for all kx , ky and kz = πn.
The inequalities (5.3) and (5.5) are most restrictive for the first mode, i.e. if n = 1. In

this case, the conditions (5.3) and (5.5) reduce to

Ra j ≤ 4π2, Ra ≤ Λm(π2κ f B1 + 1)

κ f κmB2
. (5.6a,b)

The simultaneous fulfilment of inequalities (5.6) is the sufficient condition for the absence
of convection. The inequality (5.6a) means that both conduction states in isolated Φ f and
Φm are stable; however, this does not guarantee stability for DPM. As shown in §§ 6.4
and 7, the intriguing observation is that, even if the states in Φ j are stable, the thermal
stratification in DPM can be unstable to a perturbation such that Z f > 0, Zm > 0, and
Zc < 0 (figure 2). It is sufficient to satisfy the inequality (5.6b) to guarantee the stability
to all such perturbations.

6. Particular solutions to the dispersion equation

In what follows in §§ 6–8, we assume that (2.6) holds. Then, all parameters in the
relations (4.9b) and (4.17) for Zc, Z f and Zm can be expressed by using only four
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dimensionless quantities – Ra, κ , Λ and B

κ f ≡ κ, κm = 1 − κ, Λ f ≡ Λ, Λm = 1 − Λ,

B1 ≡ B2 ≡ B, Ra f = Ra
κ

Λ
, Ram = Ra

1 − κ

1 − Λ
.

⎫⎬
⎭ (6.1)

Consequently, Rac depends only on κ , Λ and B, according to the most restrictive condition
(4.18b). Further, we investigate this dependence and associated flow regimes immediately
above criticality at Ra → Rac+. We investigate the dependence Rac(κ,Λ, B) analytically
in this section for particular asymptotic cases and numerically in § 7. We also assume
that n = 1 because for larger n ≥ 2, the number Rac is larger than that for n = 1. This
assumption is in agreement with the discussion in § 5, and it is also supported by the
numerical solutions to (4.8).

6.1. Asymptotic B → 0
Let us consider the layer stability in the asymptotic case B → 0 corresponding to local
equilibrium between Φ j. If B → 0, then according to (4.9b), Zc → ∞. Consequently, the
dispersion equation (4.8) can be satisfied only if D f + Dm → 0 because Z f and Zm are
independent of B. Substituting (3.4) and (4.9a) into the equation D f + Dm = 0, we obtain
the dispersion relation at B = 0

ΩS + k2

Ra
− k2

xy

k2
= 0. (6.2)

This equation is the dispersion relation for EPM (Horton & Rogers 1945). Therefore, the
conduction state (3.6) at B = 0 is stable at Ra ≤ 4π2 and unstable otherwise at Ra > 4π2.
This yields

Rac → 4π2, kc → π as B → 0, (6.3)

where kc is the critical overall horizontal wavenumber kxy . The relations (6.3) are the
consequence of DPM equivalence to EPM in the case of local equilibrium at B → 0.

6.2. Asymptotic B → ∞
We now consider the system behaviour in the asymptotic case B → ∞ corresponding to
infinite time required for reaching local equilibrium. Thus, the heat and mass exchange
between Φ j are absent, and the media can be considered isolated from each other. The
local equilibrium is never reached in the case of B → ∞. As noted in § 3, a realistic
porous medium cannot be characterized with large values of B, but from the mathematical
point of view, the asymptotic B → ∞ allows for simple conclusions to be reached that, as
we will show, do extrapolate into the region of finite B ∼ 1.

If B → ∞, then according to (4.9b), Zc → 0 and (4.8) reduces to

D f Dm = 0

or according to (4.17), to
Z f Zm = 0

in the case of neutral stability (Ω = 0). Thus, in the asymptotic case B → ∞, the
convection develops at the minimum Ra for which either Z f = 0 or Zm = 0 is satisfied.
If the condition Z f = 0 (or Zm = 0) is reached first with increasing Ra, then the state (3.6)
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in Φ f (or Φm) becomes unstable and convection appears in Φ f (or Φm). At the same time,
the stratification in the adjacent medium Φm (or Φ f ) remains stable. According to (5.3),
Z j = 0 is satisfied if Ra j = Ra j

c = 4π2 and kxy = kz = π. Consequently, the following
asymptotic relation holds:

Rac → min
(

Ra f
c
Λ f

κ f
, Ram

c
Λm

κm

)
, kc → π as B → ∞. (6.4)

Substituting (6.1) into (6.4) yields

Rac → 4π2 min
(

Λ

κ
,

1 − Λ

1 − κ

)
≤ 4π2 as B → ∞. (6.5)

The minimum of the fractions in (6.5) is not larger than unity for 0 ≤ κ ≤ 1 and
0 ≤ Λ ≤ 1, and it reaches a maximum at κ = Λ, i.e. if K and λ are distributed in equal
proportions between Φ j. Then, according to (6.5), Rac reaches the maximum value of 4π2

in the case of κ = Λ as compared to other values of κ and Λ. Therefore, we can conclude
for B → ∞ that Rac for DPM does not exceed that for EPM. The onset of convection in
DPM occurs for smaller (or equal at κ = Λ) vertical temperature gradients α0 than that in
EPM.

If κ > Λ, then the first fraction within the brackets in (6.5) is smaller than the second
one, i.e. convection occurs in Φ f at Ra → Rac+ (Ra f

c = 4π2 > Ram
c ). If κ < Λ, then the

second fraction in (6.5) is larger, i.e. convection occurs in Φm (Ram
c = 4π2 > Ra f

c ). Thus,
we can expect that for any finite and sufficiently large B, where Ra → Rac+, and κ > Λ

(or κ < Λ), the convection pattern in DPM is determined by the flow in the medium Φ f

(or Φm) because it is the stratification in this medium that is unstable at B → ∞.

6.3. Case κ = Λ

If K and λ are distributed between Φ f and Φm in equal proportions, i.e. κ = Λ, then we
derive from (4.9b), (4.17), and (6.1)

Z f = κ
(
Z f + Zm

)
, Zm = (1 − κ)

(
Z f + Zm

)
, Zc = 1 − κ

RaB
− κ(1 − κ)

κBk2 + 1
k2

z

k2
. (6.6)

Substituting (6.6) and Ω = 0 into the dispersion equation (4.8) yields

(
Z f + Zm

) (
κ
(
Z f + Zm

)+ 1

RaB
− κ

κBk2 + 1
k2

z

k2

)
= 0. (6.7)

Equation (6.7) is satisfied if either

Z f + Zm = 0 or κ
(
Z f + Zm

)+ 1

RaB
− κ

κBk2 + 1
k2

z

k2
= 0. (6.8a,b)

Which of the two conditions in (6.8) is satisfied first with increasing Ra determines Rac at
κ = Λ. Equation (6.8a) is the dispersion relation (6.2) for EPM at Ω = 0. It has solutions
if Ra ≥ 4π2.
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FIGURE 3. (a) Value of Ra against A as defined by (6.9). (b) The critical wavenumbers at
κ = Λ.

Substituting (6.6) into (6.8b) and collecting the terms, we obtain

Ra
k2

z

= A2

A − 1
, where A = κBk2 + 1

κBk2
z

> 1. (6.9)

According to (6.9), A is an increasing function of k2, whereas Ra reaches a minimum of
4k2

z = 4π2 at A = 2 (figure 3a), i.e. at

k2
xy = k2

z − 1
κB

= π2 − 1
κB

. (6.10)

Equation (6.10) has a solution at κB ≥ π−2. Consequently, if κB ≥ π−2, then (6.8) are
satisfied simultaneously at Ra = 4π2, and if κB < π−2, then (6.8a) is satisfied before
(6.8b) with increasing Ra. This yields

Rac = 4π2, kc = π or kc =
√

π2 − 1
κB

at κ = Λ. (6.11)

Figure 3(b) shows the critical wavenumbers (6.11) as solutions to (6.7). Straight line 1 and
curve 2 are the solutions with Zc > 0 and Zc < 0 to (6.8a) and (6.8b), respectively. The
critical Rayleigh number is 4π2 for any such solution. As we have shown, only (6.8a) has
a solution at κB < π−2. If B → 0 or B → ∞, then in accordance with (6.3) and (6.4), kc
tends to π in both solutions.

In the case of kc = π and Ra = Ra f = Ram = 4π2, both Z f = 0 and Zm = 0, i.e. the
conduction state in both media becomes unstable. Substituting Z f = 0, Zm = 0 and Ω = 0
into (4.11)–(4.13), we obtain

δΘ f = δΘm, δΠ f = δΠm, δq fm = 0.

Thus, the temperature and pressure amplitudes in the media are identical at kc = π, κ =
Λ, any B and Ra = Rac, meaning that the heat and mass transfer between Φ j is absent.
Consequently, the flow pattern is identical to that in EPM.
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6.4. Case kxy = 0 (the plane flow regime)
The dispersion equation (4.8) admits non-trivial solutions with zero horizontal
wavenumbers, which do not exist in the case of homogeneous medium. To determine the
Rayleigh numbers for which such solutions are possible, we substitute kxy = 0 and Ω = 0
into (4.8), designate Ra as Rap, and thereby obtain

Rap = (
κBk2

z + 1
) (

ΛBk2
z + 1

) 1 − Λ

κ(1 − κ)B
. (6.12)

If Ra > Rap, then the problem admits the growing plane perturbations with kxy = 0. In
what follows, we refer to such a flow pattern as the convection regime P. For kz = π
(n = 1), it is schematically shown in figure 4 (in central panel P). The flow pattern consists
of only the cross-medium convection cell (figure 1). For instance, the fluid can flow upward
through Φ f (u f

z > 0), then into Φm (q fm > 0) near the upper boundary of the layer (z = 1),
then downward through Φm (um

z < 0) and, finally, it flows back into Φm (q fm < 0) near the
lower boundary (z = 0), thereby closing the cross-medium circulation. At the same time,
according to (4.11), the inequality Θ f ≥ Θm holds at any position vector r. The circulation
can occur in the opposite direction, and then, Θ f ≤ Θm.

At near-critical conditions, the plane flow regime appears if and only if Rac = Rap,
where Rap is given by (6.12) with kz = π. In general, with increasing Ra, the thermal
stratification can first become unstable with respect to other perturbations with kxy > 0.
Consequently, the inequality Rac ≤ Rap holds, and the opposite inequality Ra > Rap is a
sufficient condition for instability.

7. Parametric study

7.1. Flow regime classification
The numerical investigation of solutions to the dispersion equation (4.8) for Ω = 0 and all
possible κ , Λ and B shows that 9 flow regimes can arise at near-critical conditions. First,
we discuss in general the convection patterns of these regimes, leaving for §§ 7.2 and 7.3
the description of parameters κ , Λ and B at which they occur.

The 9 regimes are further referred to as F, Fz, Cf x , Cf , Cm, Cmx , Mz, M and P (figures 4
and 5). The capital F or M refers to the fractures (Φ f ) or matrix (Φm) medium that is
unstable at Ra → Rac, respectively. The capital C refers to the counter-rotating pattern that
appears at Zc < 0 (see § 5). The capital P corresponds to the plane regime considered in
§ 6.4. The regimes whose designation includes either the capital F (or M) or the subscript
f (or m) are controlled mostly by the convective heat transfer through Φ f (or Φm). The
regimes whose designation differs only by the presence of the subscript x (or z) are the
same except of the sign for u j

x (or u j
z) in one of the media. For further discussion it is

convenient to organize the regimes into 4 groups, namely, the co-rotating regimes F and
M; the counter-rotating regimes Cf and Cm; the intermediate regimes Fz, Cf x , Cmx and Mz
that appear in transition from co-rotating to counter-rotating patterns; and the regime P
(figure 5).

The flow patterns and corresponding distributions of Θ j and Π j are schematically
shown in figure 4. The diagram in figure 5 shows which flow pattern transitions are
possible with continuous changes of the quantities κ , Λ and B. For example, the regime
F can change only to M, Fz or P. In other words, the region of parameters in the
{κ,Λ, B} space corresponding to the regime F can have boundaries only with the regions
corresponding to M, Fz and P.
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The regimes F and Fz correspond to the inequality Z f < 0 at Ra = Rac, i.e. if the locus
of solutions to (4.8) touches the conical surface a2 = 0 at Z f < 0 (figure 2). Numerical
analysis of the solutions to (4.8) indicates that these regimes can arise only if κ ≥ Λ,
i.e. if Φ f determines the flow pattern (Ra f ≥ 4π2 ≥ Ram). This is in agreement with the
theoretical analysis of the asymptotic case B → ∞ discussed in § 6.2. In the regimes F
and Fz, the convection in DPM is triggered by the unstable conduction state in Φ f and
the flow in Φm appears only due to heat and mass transfer between the media. Therefore,
and according to (4.11), in which D j = Z j at Ω = 0, the absolute value of the temperature
amplitude in Φ f is larger than that in Φm (|δΘ f | > |δΘm|).

Similarly, the regimes M and Mz correspond to the inequality Zm < 0 at Ra = Rac, i.e. if
the locus touches the conical surface a2 = 0 at Zm < 0. As in the asymptotic case B → ∞,
these regimes can arise only if κ ≤ Λ, i.e. if Φm determines the flow pattern (Ram ≥ 4π2 ≥
Ra f ). The convection in these regimes is triggered by the unstable state in Φm, and the
flow in Φ f appears only due to heat and mass transfer between the media. Therefore, and
according to (4.11), the absolute value of the temperature amplitude in Φm is larger than
that in Φ f (|δΘm| > |δΘ f |).

According to (4.11), in which D j = Z j at Ω = 0, the temperature amplitudes δΘ f and
δΘm have identical signs for F, Fz, M and Mz. Thus, higher (or lower) temperatures in Φ f

correspond to higher (or lower) temperatures in Φm in all 4 regimes.
The other 5 regimes – Cf x , Cf , Cm, Cmx and P – correspond to the inequality Zc < 0 at

Ra = Rac, i.e. if the locus of solutions to (4.8) touches the surface a2 = 0 at Zc < 0. These
regimes can arise at both κ > Λ and κ < Λ. Therefore, the convection is not determined
by only Φ f or Φm, which can result in more complicated flow patterns. For example,
according to (4.11), the temperature amplitudes in Φ f and Φm have opposite signs in these
regimes (δΘ f δΘm < 0), i.e. higher (or lower) temperatures in Φ f correspond to lower (or
higher) temperatures in Φm (figure 4). Furthermore, a noteworthy observation is that the
conduction states in Φ f and Φm considered apart (isolated from each other) are stable
because Z f > 0 and Zm > 0. The convection appears only if Φ f and Φm are merged to
form DPM. We can interpret this as that the heat transfer between the media triggers the
onset of convection in regimes Cf x , Cf , Cm, Cmx and P.

The co-rotating regimes F and M are characterized with qualitatively similar flow fields,
which are a simple generalization of the cellular convection cells in homogeneous porous
medium, i.e. EPM (Nield & Bejan 2017). Horizontal and vertical components of the fluid
velocities in Φ f and Φm for any position vector r have equal signs corresponding to
co-rotating cells in both media (figure 4). The regimes F and M differ only in the direction
of fluid flow between Φ j and the amplitudes δΠ j and δΘ j. In the regime F (or M), the
convection in Φ f (or Φm) dominates over that in Φm (or Φ f ), leading to larger absolute
values of δΘ f and δΠ f (or δΘm and δΠm). At the same time, in the regime F, the medium
Φ f withdraws fluid from Φm at the bottom of ascending currents due to lower pressure Π f

(q fm < 0 at z = 0) and returns it back to Φm at the top of the currents (q fm > 0 at z = 1).
Let us consider how the flow pattern changes with varying κ , Λ and B in the following

sequence of transitions (corresponding to the counter-clockwise movement around P in
figures 4 and 5):

F → Fz → Cf x → Cf . (7.1)

The transition from the co-rotating regime F to the intermediate regime Fz is characterized
by increasing intensity of the fluid withdrawal at the bottom of the ascending current.
When entering the regime Fz, the withdrawal becomes so intense that it reverts the vertical
direction of flow in Φm. Now, the fluid in Φm converges to the bottom of ascending currents
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in Φ f , which can be considered as sink zones for the medium Φm. Similarly, the top of
ascending currents in Φ f are the source zones for Φm from which the flow diverges through
Φm. Thus, the transition from F to Fz breaks down convection cells in Φm and leads to the
appearance of new cross-media cells as in the P regime. At every x, y = const in the
cross-media cells, the fluid ascends through Φ f (or Φm) and flows to the adjacent medium
Φm (or Φ f ) at the top of ascending currents, then it flows down in the descending currents
through the medium Φm (or Φ f ), and ultimately flows back to Φ f (or Φm) at z = 0, closing
the circulation (figure 1).

The intermediate regimes Fz and Cf x have identical convection patterns and different
temperature distributions in Φm. Transition from Fz to Cf x is characterized by increasing
influence of convective heat transfer through Φm as compared to that between Φ j.
Consequently, the temperature amplitude δΘm changes its sign when entering Cf x , and
the inequality δΘ f δΘm < 0 holds in the regime Cf x . Now, the descending (or ascending)
currents in Φm move the isotherms Θm = const downward (or upward).

The transition from Cf x to Cf is characterized by a further increasing influence of the
reversed flow direction in Φm. At the transition, the horizontal velocity in Φm changes
its sign, and new cellular convection with opposite direction of circulation forms in Φm.
Thus, the flow pattern in the regime Cf consists of counter-rotating cells in the media Φ f

and Φm. At the same time, the cross-medium convection cells also exist (figure 4).
The flow fields in regimes Cf and Cm are qualitatively similar, with different amplitudes

of pressure and temperature. The temperature amplitudes δΘ f and δΘm have opposite
signs (δΘ f δΘm < 0) reflecting the counter-rotating behaviour of convection. Here, the
dominant feature is the convective heat transfer through the media that moves the
isotherms in Φ f and Φm in opposite directions. The heat transfer between Φ j does not
significantly affect δΘ j because it is secondary. By definition, the boundary between
Cf and Cm corresponds to equal absolute values of δΘ f and δΘm. The inequalities
|δΘ f | > |δΘm| and |δΘ f | < |δΘm| hold in regimes Cf and Cm, respectively. Transition
from Cf to Cm is characterized by increasing influence of convective heat transfer through
Φm as compared to that through Φ f . From now on, if we consider the regimes Cm, Cmx ,
Mz and M (figure 4), the convection in Φm determines the flow pattern.

The transition sequence
M → Mz → Cmx → Cm

is characterized by the processes in the media Φm and Φ f , which mirror the processes
in the media Φ f and Φm in the sequence (7.1) described in detail above. In short, when
entering Mz from M, the vertical velocity u f

z in Φ f changes sign. When entering Cmx , the
temperature amplitude δΘ f changes sign. When entering Cm, the horizontal velocity u f

x in
Φ f reverts direction and cellular convection in Φ f with an opposite direction of circulation
forms (figure 5).

7.2. Solution map at B = const
Now, we constrain the regions of the {κ,Λ, B} space corresponding to each convection
regime. First, we consider the numerical solutions to the dispersion equation (4.8) for
fixed B and different κ and Λ (figure 6). The numerical solution indicates that only the
transitions shown in figure 5 are possible. The straight line κ = Λ for any B is the boundary
between a pair of flow regimes. In agreement with the asymptotic case B → ∞ (see § 6.2),
regimes F and Fz can arise only at κ ≥ Λ, i.e. below the straight line κ = Λ, whereas M
and Mz can arise only at κ ≤ Λ, i.e. above the straight line κ = Λ. The regimes Cf x , Cf , Cm,
Cmx and P can arise near the straight line κ = Λ and in a wider region at Λ > κ > 1/2.
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FIGURE 6. Solutions to the dispersion equation for (a,b) B = 0.1 and (c,d) B = 1. The solution
maps for other values of B are also shown in the panels (b,d). The solid lines separate different
flow regimes. The dashed lines in (a,c) are the contour lines of Rac with step 5.

To make the boundaries of the flow regimes near the straight line κ = Λ more distinct,
we show the solution map in both the {κ,Λ} plane (figure 6a,c) and the {ξ1, ξ2} plane
(figure 6b,d), where

ξ1 = 1√
2

(κ + Λ − 1) , ξ2 = 1√
2

(Λ − κ) .

Thus, the origin of the {ξ1, ξ2} plane is the point κ = Λ = 1/2 in the {κ,Λ} plane
(figure 6a).

As discussed in § 6.1, if B → 0 (i.e. if Φ j are under local equilibrium), then the solution
map contains only two regions κ > Λ and κ < Λ corresponding to the regimes F and M,
respectively. When B increases from 0 (i.e. the degree of local non-equilibrium increases),
the regions Mz, P and Cmx appear at κ → 1, Λ → 1 and κ < Λ (figure 6b, B = 0.03).
When B increases to 0.1, the regions Mz, Cmx and P expand downward and leftward along
the straight line κ = Λ (ξ2 = 0), and the area of the region P reaches a maximum at
B ≈ 0.1 (figure 6b).
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and kxy = 0 are satisfied in the corresponding regions bounded by the solid lines.

When B increases from 0.1 to 1, the region Zc < 0, corresponding to the counter-rotating
and plane regimes, expands across the straight line κ = Λ into the region κ > Λ and κ <
1/2 (figure 6c,d). In addition, the region Cm appears inside the envelope curve bounding
the region P. Then, the boundary between P and Cm moves downward and leftward (along
the straight line κ = Λ corresponding to equal distributions of K and λ between Φ j),
which results in the disappearance of the region P at κ < Λ. At κ > Λ, the regions Fz, Cf x

and Cf appear, with the region Fz growing downward from Cf x . A more detailed evolution
of the solution map near the straight line κ = Λ when B increases from 0.025 to 2.0 is
shown in figure 7.

When B increases from 1 to 100, all regions except F, Mz and Cmx shrink to the straight
line κ = Λ. The solution map for B > 100 is indistinguishable from the map at B = 100
shown in figure 6(d). According to (4.11) and (4.12), the amplitudes δΘ f and δΠ f tend to
zero in the region κ < Λ at Ω = 0 and B → ∞ (Zm = 0 or Zc = 0), and the amplitudes
δΘm and δΠm tend to zero in the region κ > Λ (Z f = 0 or Zc = 0). Thus, the convection
only in Φm (or Φ f ) develops if κ < Λ (or κ > Λ) and B → ∞. This observation agrees
with the analytical investigation of the case B → ∞ carried out in § 6.2.

As shown in figure 6(a), there is a sharp transition to the regime P from any other
regime. When entering the regime P, the wavenumber kc sharply decreases to 0 and the
solution bifurcates to P. At the same time, Rac changes continuously. Other transitions,
which are not into P or across the straight line κ = Λ (see (6.11)), are continuous rather
than sharp bifurcations.

In general, all except two boundaries between the convection regimes at B = const
are curved lines, which cannot be described with a finite readable relationship. The first
exception is the straight line κ = Λ. Let us prove that the boundary between Mz and Cmx ,
characterized with the condition δΘ f = 0 (figure 5), is the straight line κ = const, i.e. the
second exception. The parameters of any point belonging to this line satisfy the following
system of equations:

Zm = 0, Zc = 0, (7.2a)
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d
dk2

(
Z f Zm + Z f Zc + ZmZc

) = 0. (7.2b)

Equations (7.2a) indicate that the line is the boundary between the regimes Mz (Zm < 0
and Zc > 0) and Cmx (Zm > 0 and Zc < 0). The dispersion equation (4.8) is satisfied by
(7.2a). Equation (7.2b) indicates that the locus of solutions to (4.8) touches the surface
a2 = 0 (figure 2). Here, k2 is considered as the locus parameter. With account for (7.2a),
(7.2b) simplifies to

d
dk2

(Zm + Zc) = 0. (7.3)

Differentiating (4.9b) and (4.17), we obtain

dZm

dk2
= 1 − Λ

Ra
− (1 − κ)

k2
z

k2
,

dZc

dk2
= (1 − κ)κ

2k2κB + 1
(k2κB + 1)2

k2
z

k4
. (7.4)

Substituting (4.9b), (4.17) and (7.4) into (7.2a) and (7.3), we derive the system of three
algebraic equations. After excluding Ra and k2

xy from that system and carrying out identity
transformations, we obtain

κ = Bk2
z + 1

2Bk2
z + 1

. (7.5)

For B = const, (7.5) gives a vertical straight line in the plane {κ,Λ} between the regimes
Mz and Cmx . According to (7.5), if B = 0, then κ = 1, and with increasing B, the boundary
between Mz and Cmx moves leftward in the plane {κ,Λ} approaching the straight line
κ = 1/2 in the limit B → ∞.

7.3. Solutions at κ = const or Λ = const
The solutions to (4.8) for fixed κ = 0.7 and Λ = 0.7 are shown in figures 8 and 9,
respectively. The style of the contour lines shows the type of solution, either Z f < 0
(regimes F and Fz) or Zm < 0 (regimes M and Mz), or Zc < 0 (regimes Cf x , Cf , Cm and
Cmx ), or kxy = 0 (regime P). If B → 0, then, in agreement with (6.5), Rac → 4π2 and
kc → π. For any B, the critical Rayleigh number is not higher than 4π2, and thus, Rac for
DPM does not exceed Rac for EPM (figures 8a and 9a). This result demonstrates that DPM
differs from BDPM, in which LTNE can increase the value of Rac (Nield & Kuznetsov
2006). The critical wavenumber kc can be either higher or lower than π. When entering
the regime P, kc abruptly decreases to 0 and the solution bifurcates into the plane flow
pattern (figures 8b and 9b).

The labels Λ = 0.7+ and κ = 0.7− mean that Λ and κ are slightly less than or higher
than 0.7, respectively. The contour lines Λ = 0.7+ at κB ≥ π−2 and κ = 0.7− at ΛB ≥
π−2 correspond to the second solution for kc in (6.11). As shown in figure 3(b), the contour
lines Λ = 0.7− and κ = 0.7+ would be straight lines kc = π corresponding to the first
solution for kc in (6.11).

The numerical solutions to (4.8) indicate that the conclusions of this section are valid
for any constant value of κ or Λ other than 0.7.

8. Numerical experiments

To support the analytical findings of the previous sections, we conduct numerical
modelling of convection in DPM using the reservoir simulator MUFITS (Afanasyev
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FIGURE 9. Solutions to the dispersion equation at Λ = 0.7 against variable B. The dotted
curve is given by (6.12) at κ = 0.6.

2017). The simulations are performed using the dual-porosity dual-permeability concept
with (2.6) assumed to hold. The system of governing equations used in the modelling,
which in the Oberbeck–Boussinesq approximation reduces to (2.1)–(2.4), can be derived
from Pruess (1983), Pruess & Narasimhan (1985), Dietrich et al. (2005) and Berre,
Doster & Keilegavlen (2019). The inequality α � 1 holds; thus, the Oberbeck–Boussinesq
approximation is applicable with a sufficient degree of accuracy.

In dimensionless units, we consider the two-dimensional domain of finite width 5,
x ∈ [0, 5], for which the boundaries x = 0 and x = 5 are assumed to be impermeable and
adiabatic (figure 10). The parameters of 4 considered simulation scenarios are summarized
in table 1, whereas other dimensionless quantities are S f = 1.5, Sm = 3.0, α = 3.6 · 10−3

and Υ = 2.1 · 10−5. The Ra number is chosen to be less than 10 % higher than Rac

(Ra ≤ 1.1Rac). Consequently, the layer is at slightly super-critical conditions, for which
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FIGURE 10. (a–d) Simulated convection patterns for the regimes F, Mz, Cf and P, respectively.
The bold curves show isotherms Θ j = i/10, i = 1 . . . 9, the thin curves are the streamlines and
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Regime Ra κ Λ B Rac kc Figure 10

F 36.904 0.89 0.67 0.1 33.549 3.2175 (a)
Mz 22.530 0.50 0.78 0.1 20.481 2.7258 (b)
Cf 40.494 0.15 0.14 1.0 38.112 1.9076 (c)
P 36.753 0.68 0.75 0.1 33.411 0.0 (d)

TABLE 1. Parameters of the considered simulation scenarios.

the theoretical study is presented. Details of the numerical algorithm and the simulation
results as well as animated figures showing the convection development are included in
the supplementary material available at https://doi.org/10.1017/jfm.2020.462.

The flow patterns evolving at t > 100 from the quiescent stratified fluid at t = 0 are
shown in figure 10. The simulations are in agreement with the analytical study that predicts
the appearance of the F, Mz, Cf and P regimes, respectively. Indeed, the simulated patterns
replicate those schematically shown in figure 4. Also, the horizontal dimensions of the
convection cells are in line with the critical wavelength kc. According to (4.6) and (4.14),
the regions where the heat is transferred from Φ f to Φm by means of convection (q fm > 0)
and thermal conduction (Θ f − Θm > 0) do not coincide. An interesting feature is that
the streamlines in the convection cells can be spiral curves converging to the cell centres
rather than closed curves. This is explained by the mass transfer between Φ j in the weakly
nonlinear regimes at Rac < Ra ≤ 1.1Rac.

https://doi.org/10.1017/jfm.2020.462
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9. Conclusions

The study shows that Darcy–Bénard convection in a horizontal layer of DPM with
isothermal impermeable boundaries can occur by the onset of nine different flow
regimes. Most of these regimes are driven by the convective heat transport in both
media Φ j. The regimes include the flow patterns with the co-rotating or counter-rotating
convection cells in the adjacent media, as well as the plane flow field with only the
cross-medium circulation. We show that the critical Rayleigh number depends on three
parameters, namely, the ratios of permeability and heat conductivity in the media and the
dimensionless number characterizing the intensity of heat and mass transfer between Φ j.
We provide complete classification of the flow regimes and plot them in the solution map.

In the asymptotic cases of local thermal equilibrium (B → 0) or the absence of heat
and mass exchange between Φ j (B → ∞), only the co-rotating flow regimes, which are
a simple generalization of the cellular flow pattern in the HRL problem for homogeneous
medium, can arise. The most unexpected counter-rotating and plane convection patterns
arise when the heat transfer between Φ j is comparable to that through the media (i.e. at
0.01 ≤ B ≤ 10). However, these regimes occur only if the ratios of permeability and heat
conductivity in the media are close to each other (κ ≈ Λ). For the considered boundary
conditions at z = 0 and z = 1, the co-rotating convection occurs within a much wider
range of parameters.

A noteworthy conclusion for geophysical applications is that the critical Rayleigh
number for the fractured-porous medium is not higher than that for the equivalent
homogeneous medium. Therefore, the onset of convection in fractured reservoirs occurs
for vertical gradients of temperature, which are not higher than that in the homogeneous
reservoirs for any parameters of the layer. For a fixed bulk permeability, the fractures
reduce the critical Rayleigh number, i.e. the thermal stratification is less stable in a
fractured-porous medium than that in the equivalent homogeneous medium. This result
agrees with the study by Nield & Simmons (2007), who concluded that heterogeneity
of a porous medium leads to reduction of the critical Rayleigh number. We extend it by
concluding that the thermal stratification in a fractured-porous medium is most stable if
the bulk permeability and the bulk heat conductivity are distributed in equal proportions
between fractures and matrix.

The present study can be applied for predicting convection patterns for a variety
of geophysical applications, in addition to the numerical studies by Simmons et al.
(2008), Vujević et al. (2014) and others, who also report counter-rotating convection
cells, although in a slightly different context. The work still to be done is the study
extension to the cases of other boundary conditions at z = 0 and z = 1. In the geophysical
context, the case of open boundary z = 1 would be most significant because it corresponds
to a hydrothermal system interacting through z = 1 with shallow meteoric water. Even
the considered case of impermeable isothermal boundaries can further be extended by
accounting for anisotropic permeability in Φ j and B1 /= B2. Preliminary study of the
B1 /= B2 situation shows that the region of counter-rotating and plane regimes at B2 =
const expands significantly with decreasing ratio B1/B2. Therefore, the likelihood of such
regimes increases if the rate of approaching the local equilibrium for temperatures is lower
than that for pressures, but this is a subject of further research.
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